中国彩吧

           小学1-6年级数学重点知识汇总


        小学1-6年级数学重点知识点有哪些?家长们需要指导孩子们注意哪些数学公式?

        中国彩吧整理小学1-6年级数学重点知识汇总,帮助小学学生复习和巩固所学知识。

        数与代数

        01

        数的认识

        整数【正数、0、负数】

        一、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。

        二、最小的一位数是1,最小的自然数是0。

        三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。+4也可以写成4。

        四、像 +4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。

        五、0既不是正数,也不是负数。正数都大于0,负数都小于0。

        六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。

        七、通常情况下,盈利用正数表示,亏损用负数表示。

        八、通常情况下,上车人数用正数表示,下车人数用负数表示。

        九、通常情况下,收入用正数表示,支出用负数表示。

        十、通常情况下,上升用正数表示,下降用负数表示。

        小数【有限小数、无限小数】

        一、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

        二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。

        三、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。

        四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

        五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

        六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

        七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

        八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

        九、整数和小数的数位顺序表:

        分数【真分数、假分数】

        一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。

        二、两个数相除,它们的商可以用分数表示。即:a÷b=b/a(b≠0)

        三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。

        四、分数可以分为真分数和假分数。

        五、分子小于分母的分数叫做真分数。真分数小于1。

        六、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。

        七、分子和分母只有公因数1的分数叫做最简分数。

        八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

        九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。

        百分数【税率、利息、折扣、成数】

        一、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比,百分数通常用“%”表示。

        二、分数与百分数比较:

         

        不同点

        相同点

        分 数

        可以表示具体数量,可以有单位名称

        表示两个数之间的关系

        百分数

        不可以表示具体数量,不可以有单位名称

        三、分数、小数、百分数的互化。

        (1)把分数化成小数,用分数的分子除以分母。

        (2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。

        (3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。

        (4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。

        (5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。

        (6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

        四、熟记常用三数的互化。

        五、

        1、出勤率表示出勤人数占总人数的百分之几。

        2、合格率表示合格件数占总件数的百分之几。

        3、成活率表示成活棵数占总棵数的百分之几。

        六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。

        七、1、多的÷“1”=多百分之几 2、少的÷“1”= 少百分之几

        八、应得利息是税前利息,实得利息是税后利息。

        九、利息 = 本金 × 利率 × 时间

        十、应得利息 -利息税 = 实得利息

        十一、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。

        十二、

        1、原价×折扣=现价

        2、现价÷原价=折扣

        3、现价÷折扣=原价

        十三、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。

        因数与倍数【素数、合数、奇数、偶数】

        一、4 × 3 = 12,12是4的倍数,12也是3的倍数,4和3都是12的因数。

        二、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。

        三、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。

        四、5的倍数:个位上的数是5或0。

        2的倍数:个位上的数是2、4、6、8或0。2的倍数都是双数。

        3的倍数:各位上数的和一定是3的倍数。

        五、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。

        六、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。

        七、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。

        八、在1—20这些数中:(1既不是素数,也不是合数)

        奇数:1、3、5、7、9、11、13、15、17、19。

        偶数:2、4、6、8、10、12、14、16、18、20。

        素数:2、3、5、7、11、13、17、19。(共8个,和为77。)

        合数:4、6、8、9、10、12、14、15、16、18、20。(共11个,和为132。)

        九、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。

        十、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。

        十一、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积。

        02

        数的运算

        计算法则【整数、小数、分数】

        一、计算整数加、减法要把相同数位对齐,从低位算起。

        二、计算小数加、减法要把小数点对齐,从低位算起。

        三、小数乘法:1、先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

        2、注意:在积里点小数点时,位数不够的,要在前面用0补足。

        四、小数除法:

        1、商的小数点要和被除数的小数点对齐;

        2、有余数时,要在后面添0,继续往下除;

        3、个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。

        4、把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。

        5、当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。

        五、一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……

        六、一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……

        七、分数加、减法:1同分母分数相加减,把分子相加减,分母不变。2异分母分数相加减,要先通分化成同分母分数,然后再相加减。

        八、分数大小的比较:1同分母分数相比较,分子大的大,分子小的小。2异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

        九、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

        十、甲数除以乙数(0除外),等于甲数乘乙数的倒数。

        四则运算关系

        加法

        一个加数 = 和-另一个加数

        减法

        被减数 = 差 + 减数

        减数 = 被减数 - 差

        乘法

        一个因数 = 积 ÷ 另一个因数

        除法

        被除数 = 商 × 除数

        除数 = 被除数 ÷ 商

        两个规律

        一、除法的商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。

        二、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变。

        简便计算

        一、运算定律:

        运算定律

        用字母表示

        加法交换律

        a+b=b+a

        加法结合律

        (a+b)+c=a+(b+c)

        乘法交换律

        a×b=b×a

        乘法结合律

        (a×b)×c=a×(b×c)

        乘法分配律

        (a+b)×c=a×c+b×c

        减法运算规律

        a-b-c=a-(b+c)

        除法运算规律

        a÷b÷c=a÷(b×c)

        二、乘、除法的互化。(小技巧:符号是相反的;两个数相乘得“1”。)

        (1)A÷0.1=A×10

        (2)A×0.1=A÷10

        (7)A÷0.01=A×100;

        (8)A×0.01=A÷100

        (3)A÷0.2=A×5

        (4)A×0.2=A÷5

        (9)A÷0.25=A×4

        (10)A×0.25=A÷4

        (5)A÷0.5=A×2

        (6)A×0.5=A÷2

        (11)A÷0.125=A×8

        (12)A×0.125=A÷8

        三、求近似数的方法。

        ①四舍五入法。②进一法。③去尾法。

        四、积与因数、商与被除数的大小比较:

        第2个因数>1,积>第1个因数;

        第2个因数=1,积=第1个因数;

        第2个因数<1,积<第1个因数。

        除数>1,商<被除数;

        除数=1,商=被除数;

        除数<1,商>被除数;

        数量关系

        单价×数量=总价

        总价÷数量=单价

        总价÷单价=数量

        工作效率×工作时间=工作总量

        工作总量÷工作时间=工作效率

        工作总量÷工作效率=工作时间

        速度×时间=路程

        路程÷时间=速度

        路程÷速度=时间

        速度和×相遇时间=路程

        路程÷相遇时间=速度和

        路程÷速度和=相遇时间

        03

        式与方程

        用字母表示数

        一、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“· ”,也可以省略不写。在省略数字与字母之间的乘号时,要把数字写在字母的前面。

        二、2a与a2意义不同:2a表示两个a相加,a2表示两个a相乘。即:2a=a+a,a2= a×a。

        三、用字母表示数:

        ①用字母表示任意数:如X=4 a=6

        ②用字母表示常见的数量关系:如s=vt

        ③用字母表示运算定律:如a+b=b+a

        ④用字母表示计算公式:S=ah

        方程与等式

        一、含有未知数的等式叫做方程。

        二、使方程左右两边相等的未知数的值,叫做方程的解。

        三、求方程的解的过程,叫做解方程。

        四、方程和等式的联系与区别:

         

        方 程

        等 式

        联 系

        方程一定是等式,等式不一定是方程

        区 别

        含有未知数

        不一定含有未知数

        五、等式的基本性质(一):等式两边同时加上(或减去)一个相同的数,所得结果仍然是等式。

        六、等式的基本性质(二):等式两边同时乘(或除以)一个不等于零的数,所得结果仍然是等式。

        七、列方程解应用题的一般步骤:

        ①弄清题意,找出未知数并用X表示。

        ②找出应用题中数量间的相等关系,并列出方程。

        ③求出方程的解。

        ④检验或验算,写出答案。

        04

        正比例与反比例

        比和比例

        一、比和比例的联系与区别:

        1、意义不同

        比的意义

        两个数相除又叫做两个数的比。

        比例的意义

        表示两个比相等的式子叫做比例。

        2、名称不同

        比的名称

        两点读作比,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

        比例的名称

        组成比例的四个数叫做比例的项,两端的两项叫做比例的的外项,中间的两项叫做比例的内项。

        3、性质不同

        比的性质

        比的前项和后项同时乘或者除以相同的数(0除外),比值不变。

        比例的性质

        在比例里,两个外项的积等于两个内项的积。

        4、应用不同

        应用比的意义

        求比值。

        应用比的性质

        化简比。

        应用比例的意义

        判断两个不能否组成比例。

        应用比例的性质

        不但可以判断两个比能否组成比例,还可以解比例。

        二、比同分数、除法的联系与区别:

         

        分数

        除法

        前项

        分子

        被除数

        比号

        分数线

        除号

        后项

        分母

        除数

        比值

        分数值

        比的基本性质

        分数的基本性质

        除法的商不变性质

        比表示两个数之间的关系。

        分数表示一个数。

        除法表示一种运算。

        三、求比值与化简比的区别:

         

        一 般 方 法

        结 果

        求比值

        根据比值的意义,用前项除以后项。

        是一个数。可以是整数、小数或分数。

        化简比

        根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外)。

        是一个比。它的前项和后项都是整数,并且是互质数。

        四、化简比:

        ①整数比的化简方法是:用比的前项和后项同时除以它们的最大公约数。

        ②小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简。

        ③分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数。

        五、比例尺:我们把图上距离和实际距离的比叫做这幅图的比例尺。

        六、比例尺=图上距离︰实际距离比例尺 = 图上距离/实际距离

        正比例、反比例

        一、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

        二、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

        三、正比例与反比例的区别:

         

        正 比 例

        反 比 例

        相 同 点

        都有两种相关联的量,一种量变化,另一种量也随着变化。

        不 同 点

        商一定

        y/x= k(一定)

        积一定

        x×y=k(一定)

        空间与图形

        01图形的认识、测量

        量的计量

        一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。

        二、长度单位:

        1千米=1000米

        1米=10分米

        1分米=10厘米

        1厘米=10毫米

        1米=100厘米

        1米=1000毫米

        三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。

        四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。

        五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。

        六、面积单位:(100)

        1平方千米=100公顷

        1公顷=10000平方米

        1平方米=100平方分米

        1平方分米=100平方厘米

        七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

        八、体积单位:(1000)

        1立方米=1000立方分米

        1立方分米=1000立方厘米

        1升=1000毫升

         

        九、常用的质量单位有:吨、千克、克。

        十、质量单位:

        1吨=1000千克

        1千克=1000克

        十一、常用的时间单位有:

        世纪、年、季度、月、旬、日、时、分、秒。

        十二、时间单位:(60)

        1世纪=100年

        1年=12个月

        1年=4个季度

        1个季度=3个月

        1个月=3旬

        大月=31天

        小月=30天

        平年二月=28天

        闰年二月=29天

        1天=24小时

        1小时=60分

        1分=60秒

        十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。

        十四、常用计量单位用字母表示:

        千米:km

        米:m

        分米:dm

        厘米:cm

        毫米:mm

        吨:t

        千克:kg

        克:g

        升:l

        毫升:ml

        平面图形【认识、周长、面积】

        一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

        二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。

        三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。

        四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。

        五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

        六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。

        按边分,可以分为等边三角形、等腰三角形和任意三角形。

        七、三角形的内角和等于180度。

        八、在一个三角形中,任意两边之和大于第三边。

        九、在一个三角形中,最多只有一个直角或最多只有一个钝角。

        十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。

        十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。

        十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。

        十三、围成一个图形的所有边长的总和就是这个图形的周长。

        十四、物体的表面或围成的平面图形的大小,叫做它们的面积。

        十五、平面图形的面积计算公式推导:

        【1】平行四边形面积公式的推导过程?

        ①把平行四边形通过剪切、平移可以转化成一个长方形。

        ②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。

        ③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。

        【2】三角形面积公式的推导过程?

        ①用两个完全一样的三角形可以拼成一个平行四边形。

        ②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半

        ③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。即:S=ah÷2。

        【3】梯形面积公式的推导过程?

        ①用两个完全一样的梯形可以拼成一个平行四边形。

        ②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。

        ③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。

        【4】画图说明圆面积公式的推导过程

        ①把圆分成若干等份,剪开后,拼成了一个近似的长方形。

        ②长方形的长相当于圆周长的一半,宽相当于圆的半径。

        ③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr。即:S=πr。

        十六、平面图形的周长和面积计算公式:

        长方形周长 =(长+宽)× 2

        C = πd

         

        长方形面积 = 长 × 宽

        C = 2πr

         

        正方形周长 = 边长 × 4

        r= d÷2

         

        正方形面积 = 边长 × 边长

        r=C ÷2π

         

        平行四边形面积 = 底 × 高

        d=2r

         

        三角形面积 = 底 × 高 ÷ 2

        d=c ÷π

         

        十七、常用数据:

        常用π值

        常用平方数

        2π=6.28

        12π=37.68

        1= 1

        3π=9.42

        15π=47.1

        2=4

        4π=12.56

        16π=50.24

        3=9

        5π=15.70

        18π=56.52

        4=16

        6π=18.84

        20π=62.8

        5=25

        7π=21.98

        25π= 78.5

        6=36

        8π=25.12

        32π=100.48

        7=49

        9π=28.26

        2.25π=7.065

        8=64

        10π=31.4

        6.25π=19.625

        9=81

        立体图形【认识、表面积、体积】

        一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。

        二、圆柱的特征:一个侧面、两个底面、无数条高。

        三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。

        四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。

        五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。

        六、圆柱和圆锥三种关系:

        ①等底等高:体积1︰3

        ②等底等体积:高1︰3

        ③等高等体积:底面积1︰3

        七、等底等高的圆柱和圆锥:

        ①圆锥体积是圆柱的1/3,

        ②圆柱体积是圆锥的3倍,

        ③圆锥体积比圆柱少2/3,

        ④圆柱体积比圆锥多2倍。

        八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。

        九、立体图形公式推导:

        【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)

        ①圆柱的侧面展开后一般得到一个长方形。

        ②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

        ③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。

        ④圆柱的侧面展开后还可能得到一个正方形。

        正方形的边长=圆柱的底面周长=圆柱的高。

        【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?

        ①把圆柱分成若干等份,切开后拼成了一个近似的长方体。

        ②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

        ③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。

        【3】请画图说明圆锥体积公式的推导过程?

        ①找来等底等高的空圆锥和空圆柱各一只。

        ②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。

        ③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=1/3Sh。

        十、立体图形的棱长总和、表面积、体积计算公式:

        名称

        计算公式

        长方体棱长总和

        长方体棱长总和 = (长+宽+高)× 4

        长方体表面积

        长方体表面积=(长×宽+长×高+宽×高)×2

        长方体体积

        长方体体积=长×宽×高

        正方体棱长总和

        正方体棱长总和=棱长×12

        正方体表面积

        正方体表面积=棱长×棱长×6

        正方体体积

        正方体体积=棱长×棱长×棱长

        圆柱体侧面积

        圆柱体侧面积=底面周长×高

        圆柱体表面积

        圆柱体表面积=侧面积+底面积×2

        圆柱体体积

        圆柱体体积=底面积×高

        圆锥体体积

        圆锥体体积=Sh

        02

        图形与变换

        一、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。

        二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。

        三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。

        (三)图形与位置

        一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置。

        二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。

        统计与可能性

        01

        统 计

        一、我们通常都是通过打勾、画圆、划“正”字的方法进行数据的收集和整理。

        二、常见的统计图有条形统计图、折线统计图和扇形统计图三种。

        三、条形统计图的特点:从图中能清楚地看出各种数量的多少,便于比较。

        四、折线统计图的特点:不但能看出各种数量的多少,而且还能够清楚地表示出数量增减变化的情况。

        五、扇形统计图的特点:表示各部分和总数之间,以及部分与部分之间的关系。

        六、中位数、众数、平均数

        名称

        意义

        计算方法

        中位数

        一组数中间的一个数或中间两个数的平均数。

        中间的一个数或中间两个数的和÷2

        众数

        一组数中出现次数最多的数。

        出现次数最多的数

        平均数

        反映一组数的总体水平的数据。

        平均数=总数÷份数

        02

        可能性

        一、

        事件状态

        生活情景

        数学情景

        一定会发生

        太阳从东方升起

        从5个红球中摸出一个红球

        一定不会发生

        鸭子会讲话

        从5个红球中摸出一个白球

        可能发生

        今天会下雨

        从5个红球,1个白球中摸出一个白球

        二、在可能性相同的情况下,比赛游戏规则是公平的。

        声明:本文转载于小学数学微信公众号(ID:xxsx100),由中国彩吧团队(微信公众号ID:bjysxwx)排版编辑,如有侵权,请及时联系管理员删除。

          中国彩吧扫一扫 关注官方微信
          ○ 致力于中国彩吧入学资讯
          ○ 微信公众号搜索「中国彩吧」或「bjysxwx」关注
          0
          来源:小学数学 | 原文链接 | 报错??

          相关阅读

          划片查询

          一册在手,升学不愁

          资料订阅

          及时了解升学信息

          中国彩吧微信

          收听最新活动与升学动态

          预约咨询

          一对一规划指导

          <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>

          Copyright © 2002-2019中国彩吧版权所有